Project Euler Problem 45

Triangular, pentagonal, and hexagonal

Triangle, pentagonal, and hexagonal numbers are generated by the following formula:


Triangle    Tn=n(n+1)/2     1, 3, 6, 10, 15, ...
Pentagonal  Pn=n(3n−1)/2    1, 5, 12, 22, 35, ...
Hexagonal   Hn=n(2n−1)      1, 6, 15, 28, 45, ...

It can be verified that T285 = P165 = H143 = 40755.

Find the next triangle number that is also pentagonal and hexagonal.

»

Project Euler Problem 44

Pentagon numbers

Pentagonal numbers are generated by the formula, Pn=n(3n−1)/2. The first ten pentagonal numbers are:

        1, 5, 12, 22, 35, 51, 70, 92, 117, 145, ...

It can be seen that P4 + P7 = 22 + 70 = 92 = P8. However, their difference, 70 − 22 = 48, is not pentagonal.

Find the pair of pentagonal numbers, Pj and Pk, for which their sum and difference are pentagonal and D = |Pk − Pj| is minimised; what is the value of D?

»

Project Euler Problem 43

Sub-string divisibility

The number, 1406357289, is a 0 to 9 pandigital number because it is made up of each of the digits 0 to 9 in some order, but it also has a rather interesting sub-string divisibility property.

Let d1 be the 1st digit, d2 be the 2nd digit, and so on. In this way, we note the following:

»

Project Euler Problem 42

Coded triangle numbers

The n-th term of the sequence of triangle numbers is given by, tn = ½n(n+1); so the first ten triangle numbers are:

        1, 3, 6, 10, 15, 21, 28, 36, 45, 55, ...

By converting each letter in a word to a number corresponding to its alphabetical position and adding these values we form a word value. For example, the word value for SKY is 19 + 11 + 25 = 55 = t10. If the word value is a triangle number then we shall call the word a triangle word.

Using words.txt, a 16K text file containing nearly two-thousand common English words, how many are triangle words?

»

Project Euler Problem 40

Champernowne’s constant.

An irrational decimal fraction is created by concatenating the positive integers:

0.123456789101112131415161718192021…

It can be seen that the 12th digit of the fractional part is 1.

If dn represents the nth digit of the fractional part, find the value of the following expression.

d1 × d10 × d100 × d1000 × d10000 × d100000 × d1000000

»

Project Euler Problem 41

Pandigital prime.

We shall say that an n-digit number is pandigital if it makes use of all the digits 1 to n exactly once. For example, 2143 is a 4-digit pandigital and is also prime.

What is the largest n-digit pandigital prime that exists?

»