Project Euler problem 47
Distinct primes factors
The first two consecutive numbers to have two distinct prime factors are:
14 = 2 × 7 15 = 3 × 5
The first three consecutive numbers to have three distinct prime factors are:
644 = 2² × 7 × 23 645 = 3 × 5 × 43 646 = 2 × 17 × 19.
Find the first four consecutive integers to have four distinct prime factors. What is the first of these numbers?
Link to original description
Source code examples on Github
Python version
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 | #!/usr/bin/python import prime num, count, answer = 644, 0, 0 while True: if len(set(list(prime.factors(num)))) == 4: if count == 0: answer = num count += 1 if count == 4: print "Answer: %s" % answer break else: answer, count = 0, 0 num += 1 |
Erlang version
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 | #!/usr/bin/env escript %% -*- erlang -*- %%! -smp enable -sname p47 % vim:syn=erlang -mode(compile). -define(MAX, 1000). main(_) -> get_primes(?MAX), io:format("Answer: ~p ~n", [t47(644, {[],[]})]). t47(_,{[H|_]=A1,_}) when length(A1)==4 -> H; t47(N, {A1, A2}) -> L = [X || X <- d(N), is_prime(X)], case length(L) == 4 of true -> t47(N+1, {A1++[N], A2++L}); false -> t47(N+1, {[],[]}) end. d(0) -> []; d(1) -> []; d(N) -> lists:sort(divisors(1, N)). divisors(1, N) -> [1|divisors(2,N,math:sqrt(N))]. divisors(K,_,Q) when K > Q -> []; divisors(K,N,_) when N rem K =/= 0 -> divisors(K+1,N,math:sqrt(N)); divisors(K,N,_) when K*K == N -> [K|divisors(K+1,N,math:sqrt(N))]; divisors(K,N,_) -> [K,N div K] ++ divisors(K+1,N,math:sqrt(N)). is_prime(N) -> case ets:lookup(prim, N) of [] -> false ;_ -> true end. %----------------------------------------------- prime generator from Project Euler 10 (version 5 ---------------------------) get_primes(N) -> ets:new(comp, [public, named_table, {write_concurrency, true} ]), ets:new(prim, [public, named_table, {write_concurrency, true}]), composite_mc(N), primes_mc(N), lists:sort([P || {P,_} <-ets:tab2list(prim)]). primes_mc(N) -> case erlang:system_info(schedulers) of 1 -> primes(N); C -> launch_primes(lists:seq(1,C), C, N, N div C) end. launch_primes([1|T], C, N, R) -> P = self(), spawn(fun()-> primes(2,R), P ! {ok, prm} end), launch_primes(T, C, N, R); launch_primes([H|[]], C, N, R)-> P = self(), spawn(fun()-> primes(R*(H-1)+1,N), P ! {ok, prm} end), wait_primes(C); launch_primes([H|T], C, N, R) -> P = self(), spawn(fun()-> primes(R*(H-1)+1,R*H), P ! {ok, prm} end), launch_primes(T, C, N, R). wait_primes(0) -> ok; wait_primes(C) -> receive {ok, prm} -> wait_primes(C-1) after 1000 -> wait_primes(C) end. primes(N) -> primes(2, N). primes(I,N) when I =< N -> case ets:lookup(comp, I) of [] -> ets:insert(prim, {I,1}) ;_ -> ok end, primes(I+1, N); primes(I,N) when I > N -> ok. composite_mc(N) -> composite_mc(N,2,round(math:sqrt(N)),erlang:system_info(schedulers)). composite_mc(N,I,M,C) when I =< M, C > 0 -> C1 = case ets:lookup(comp, I) of [] -> comp_i_mc(I*I, I, N), C-1 ;_ -> C end, composite_mc(N,I+1,M,C1); composite_mc(_,I,M,_) when I > M -> ok; composite_mc(N,I,M,0) -> receive {ok, cim} -> composite_mc(N,I,M,1) after 1000 -> composite_mc(N,I,M,0) end. comp_i_mc(J, I, N) -> Parent = self(), spawn(fun() -> comp_i(J, I, N), Parent ! {ok, cim} end). comp_i(J, I, N) when J =< N -> ets:insert(comp, {J, 1}), comp_i(J+I, I, N); comp_i(J, _, N) when J > N -> ok. |