Project Euler Problem 36
Double-base palindromes
The decimal number, 585 = 1001001001 (binary), is palindromic in both bases.
Find the sum of all numbers, less than one million, which are palindromic in base 10 and base 2.
(Please note that the palindromic number, in either base, may not include leading zeros.)
Link to original description
Source code examples on Github
Erlang version
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 | #!/usr/bin/env escript %% -*- erlang -*- %%! -smp enable -sname p36 % vim:syn=erlang -mode(compile). main(_) -> Answer = lists:sum([X||X<-lists:seq(1,999999), isDPalindrome(X)]), io:format("Answer ~p ~n", [ Answer ]). isDPalindrome(X) -> L = integer_to_list(X), case L == lists:reverse(L) of true -> B = integer_to_list(X,2), B == lists:reverse(B) ;_ -> false end. |
Python version 1
1 2 3 4 5 6 7 8 9 10 11 12 | #!/usr/bin/python def ispalindrome(n): s = str(n) if s == s[::-1]: b = bin(n)[2::] return b == b[::-1] else: return False print sum(n for n in xrange(1, 1000000) if ispalindrome(n)) |
Python version 2
1 2 3 4 5 6 7 8 9 10 11 12 13 14 | #!/usr/bin/python def ispalindrome(n, base): digits = [] reverse = [] while n > 0: d = str(n % base) digits.append(d) reverse.insert(0, d) n = n / base return digits == reverse print sum(n for n in xrange(1, 1000000) if ispalindrome(n, 10) and ispalindrome(n, 2)) |