Project Euler Problem 35
Circular primes
The number, 197, is called a circular prime because all rotations of the digits: 197, 971, and 719, are themselves prime.
There are thirteen such primes below 100:
2, 3, 5, 7, 11, 13, 17, 31, 37, 71, 73, 79, and 97.
How many circular primes are there below one million?
Link to original description
Source code examples on Github
Erlang version
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 | #!/usr/bin/env escript %% -*- erlang -*- %%! -smp enable -sname p35 % vim:syn=erlang -mode(compile). main(_) -> L = [P||P<-prime(1000000), cirlcePrime(P)], io:format("Answer ~p ~n", [ length(L)]). cirlcePrime(P) -> PL = integer_to_list(P), L = permute(PL,length(PL),[]) -- PL, L1 = length(L), L2 = length([X||X<-L, is_prime(list_to_integer(X))]), L1 == L2. is_prime(X) -> case ets:lookup(prim, X) of [] -> false ;_ -> true end. permute(_,0,A) -> A; permute([H|T], N, A) -> permute(T++[H], N-1, A++[T++[H]]). %------------------------------------- prime library from problem 10------------ prime(N) -> ets:new(comp, [public, named_table, {write_concurrency, true} ]), ets:new(prim, [public, named_table, {write_concurrency, true}]), composite_mc(N), primes_mc(N), lists:sort([X||{X,_}<- ets:tab2list(prim)]). primes_mc(N) -> case erlang:system_info(schedulers) of 1 -> primes(N); C -> launch_primes(lists:seq(1,C), C, N, N div C) end. launch_primes([1|T], C, N, R) -> P = self(), spawn(fun()-> primes(2,R), P ! {ok, prm} end), launch_primes(T, C, N, R); launch_primes([H|[]], C, N, R)-> P = self(), spawn(fun()-> primes(R*(H-1)+1,N), P ! {ok, prm} end), wait_primes(C); launch_primes([H|T], C, N, R) -> P = self(), spawn(fun()-> primes(R*(H-1)+1,R*H), P ! {ok, prm} end), launch_primes(T, C, N, R). wait_primes(0) -> ok; wait_primes(C) -> receive {ok, prm} -> wait_primes(C-1) after 1000 -> wait_primes(C) end. primes(N) -> primes(2, N). primes(I,N) when I =< N -> case ets:lookup(comp, I) of [] -> ets:insert(prim, {I,1}) ;_ -> ok end, primes(I+1, N); primes(I,N) when I > N -> ok. composite_mc(N) -> composite_mc(N,2,round(math:sqrt(N)),erlang:system_info(schedulers)). composite_mc(N,I,M,C) when I =< M, C > 0 -> C1 = case ets:lookup(comp, I) of [] -> comp_i_mc(I*I, I, N), C-1 ;_ -> C end, composite_mc(N,I+1,M,C1); composite_mc(_,I,M,_) when I > M -> ok; composite_mc(N,I,M,0) -> receive {ok, cim} -> composite_mc(N,I,M,1) after 1000 -> composite_mc(N,I,M,0) end. comp_i_mc(J, I, N) -> Parent = self(), spawn(fun() -> comp_i(J, I, N), Parent ! {ok, cim} end). comp_i(J, I, N) when J =< N -> ets:insert(comp, {J, 1}), comp_i(J+I, I, N); comp_i(J, _, N) when J > N -> ok. |
Python version
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 | #!/usr/bin/python def mark(sieve, x): for i in xrange(x+x, len(sieve), x): sieve[i] = False def circular(n): digits = [] while n > 0: digits.insert(0, str(n % 10)) n = n / 10 for d in xrange(1, len(digits)): yield int(''.join(digits[d:] + digits[0:d])) sieve = [True] * 1000000 sieve[0] = sieve[1] = False for x in xrange(2, int(len(sieve) ** 0.5) + 1): mark(sieve, x) count = 0 for n, p in enumerate(sieve): if p: iscircularprime = 1 for m in circular(n): if not sieve[m]: iscircularprime = 0 break if iscircularprime: count = count + 1 print count |